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Abstract. The Libra blockchain is designed to store billions of dollars
in assets, so the security of code that executes transactions is important.
The Libra blockchain has a new language for implementing transactions,
called “Move.” This paper describes the Move Prover, an automatic for-
mal verification system for Move. We overview the unique features of
the Move language and then describe the architecture of the Prover,
including the language for formal specification and the translation to
the Boogie intermediate verification language.
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1 Introduction

The ability to implement arbitrary transactions on a blockchain via so-called
smart contracts has led to an explosion in innovative services in systems such
as Ethereum [41]. Unfortunately, bugs in smart contracts have led to massive
amounts of funds being stolen or made inaccessible [5,15]. In retrospect, the
source of these disasters is fairly obvious: smart contracts operate without a
safety net. A fundamental requirement for blockchains is that transactions be
automatic and irreversible. Unlike traditional financial applications, there is lit-
tle opportunity for humans to oversee or intervene in transactions. Indeed, the
design of the blockchain is intended to prevent human involvement. The result-
ing potential havoc that can be caused by a bug in a smart contract makes it
essential for these contracts to be correct, without vulnerabilities. Not surpris-
ingly, there is great interest in formal verification and other advanced testing
methods for smart contracts, and several verification systems already exist or
are under development.

This work was supported by the Stanford Center for Blockchain Research and Novi,
a Facebook subsidiary whose goal is to provide financial services that let people par-
ticipate in the Libra network. The Libra Association manages the Libra network and
is an independent, not-for-profit membership organization, headquartered in Geneva,
Switzerland.
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The Libra blockchain [3,38] is designed to be a foundation for supporting
financial services for billions of people around the world. If successful, it could
store and manage assets worth billions of dollars, with correspondingly stringent
security requirements. The code that modifies the state of the blockchain is espe-
cially important. The architecture of the Libra blockchain requires that all such
modifications be performed by the Move [12] virtual machine, which executes
the well-defined Move instruction set. This architecture means that verification
efforts can focus on the correctness of bytecode programs implementing smart
contracts, including formally verifying those programs.

Contributions

In this paper, we describe a specification language and formal verification system
for Move. If a programmer writes functional correctness properties for a proce-
dure, the Move Prover tool can automatically verify it. Although many similar
Floyd-Hoare verifiers exist, widespread adoption has been a challenge because
conventional software is large, complex, and uses language features that present
difficulties for even the simplest verification tasks. However, we are hopeful that
the Move Prover will be used by the majority of Move programmers. There are
three reasons for this optimism. First, the Move language has been designed to
support verification. Second, we are building a culture of specification from the
beginning: each Move module used by the Libra blockchain is being written with
an accompanying formal specification. Finally, we are working to make the Move
Prover as precise, fast, and user-friendly as possible.

The Move language, the Move Prover, Move programs, and their specifica-
tions, have been evolving rapidly, so this description necessarily represents a
snapshot of the project at a particular time. However, we expect most of the
changes to be improvements and extensions to the basics described here. In the
remainder of this paper, we will:

1. Present a brief overview of Move and explain the language design decisions
that facilitate verification (Sect. 2);

2. Describe how the Move Prover toolchain is implemented (Sect. 3);
3. Explain the model used to represent Move programs (Sect. 4);
4. Define the Move specification language and give examples of useful properties

it can encode (Sect. 5); and
5. Demonstrate that the Move Prover can verify important aspects of the Libra

core modules (Sect. 6).

2 Background: The Move Language

Move [12] is an executable bytecode language for writing smart contracts and
custom transaction logic. Contracts in Move are written as modules that contain
record types and procedures. Records in modules may either be struct or resource
types—the most novel feature of Move. A resource type has linear [17] seman-
tics, meaning that resources cannot be created, copied, or destroyed except by
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module LibraCoin {
resource struct T { value: u64 }

public fun join(coin: &mut LibraCoin::T, to_consume: LibraCoin::T) {
let T { value } = to_consume; // MoveLoc(1); Unpack
let c_value_ref = &mut coin.value; // MoveLoc(0); MutBorrowField<value>; StLoc(0)
*c_value_ref = *c_value_ref + value; // CopyLoc(0); ReadRef; Add; MoveLoc(0); WriteRef
return; // Ret

}

Fig. 1. A Move module with its bytecode representation in comments.

procedures in its declaring module. Resources allow programmers to encode safe,
yet customizable assets that cannot be accidentally (or intentionally) copied or
destroyed by code outside the module.

Move is minimal in comparison to most conventional programming lan-
guages. The only types besides records are primitives (Booleans, unsigned inte-
gers, addresses), vectors, and references (which must be labeled as mutable
or immutable, similar to Rust [30]). Records can contain primitives and other
records, but not references. Control-flow constructs can be encoded via jumps
to static labels in the bytecode.

Move programs execute in the context of a blockchain with modules and
resources published under account addresses. To interact with the blockchain,
a programmer can write a Move transaction script, a single-procedure program
similar to a main procedure in a conventional language, that invokes proce-
dures of published modules. This script is then packaged into a cryptographi-
cally signed transaction that is executed by validators in the Libra blockchain.
As in Ethereum, transaction execution is metered, meaning that computational
resources (or “gas”) used when a Move program is executed are measured and
must be paid for by the submitter of a transaction (though we note that the
Move Prover does not yet reason about gas usage).

Verification-Friendly Design. There are several aspects of Move’s design that
facilitate verification. The first is limited interaction with the environment: to
ensure deterministic execution, the language can only read data from the global
blockchain state or the current transaction (no file or network I/O). Second,
many features that are challenging for verification are absent from Move: con-
currency, higher-order functions, exceptions, sub-typing, and dynamic dispatch.
The absence of the last feature is particularly notable because it is present in
Ethereum bytecode and has contributed to subtle re-entrancy bugs (e.g., [14]).
Third, Move has built-in safe arithmetic: overflows and underflows are detected
during execution and result in a transaction abort. Finally, many common errors
are prevented by the Move bytecode verifier (not to be confused with the Move
Prover), a static analyzer that checks each bytecode program before execution
(similar to the JVM [26] or CLR [31] bytecode verifier). The bytecode verifier
ensures that:
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Fig. 2. The Move Prover architecture.

1. Procedures and struct declarations are well-typed (e.g., linearity of resources)
2. Dependent modules and procedure targets exist (i.e., static linking)
3. Module dependencies are acyclic
4. The operand stack height is the same at the beginning and end of each basic

block
5. A procedure can only touch stack locations belonging to callers via a reference

passed to the callee
6. The global and local memory are always tree-shaped
7. There are no dangling references
8. A mutable reference has exclusive access to its referent

Because these checks are run on every Move bytecode program, the prover can
rely on them in its own reasoning. Note that this would not be true if the checks
were performed by a source language compiler, since bad bytecode programs
could be created by compiler bugs or by writing programs directly in the exe-
cutable bytecode representation.

Limited Aliasing. In the rest of this section, we present an example that explains
the memory-related invariants enforced by the Move bytecode verifier (6–8
above). The example in Fig. 1 is written in the Move source language, which
can be directly compiled to the Move bytecode representation shown in the
comments (note that the Move Prover analyzes the bytecode itself). The join

procedure accepts two arguments: coin of type &mut LibraCoin::T (a muta-
ble reference to a LibraCoin::T value stored elsewhere) and to_consume of
type LibraCoin::T (an owned LibraCoin::T value). The purpose of this pro-
cedure is to destroy the LibraCoin::T resource stored in to_consume and add
its value to the LibraCoin::T resource referenced by coin. The first line of the
procedure performs the destruction by “unpacking” to_consume (placing the
program value bound to its field into the program variable value), and the next
two lines read the current value of c_value_ref and update it.

The careful reader might wonder: what will happen if c_value_ref is
a reference to to_consume? In a C-like language, the first line would make
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c_value_ref into a dangling reference, which would lead to a memory error
when it is subsequently used. Fortunately, the Move bytecode verifier ensures
that this cannot happen. An owned value like to_consume can only be moved
(either onto the operand stack or into global storage) if there are no outstand-
ing references to the value. In addition, the bytecode verifier guarantees that
no mutable reference can be an ancestor or descendant of another (mutable or
immutable) reference in the same local or global data tree. This is a very strong
restriction! It ensures that procedure formals that can be mutated (mutable ref-
erences or owned values) point to disjoint memory locations. For example, an
additional formal of type &mut u64 in the code above could not point into the
memory of the other formals. Formals that are immutable references may alias
with each other, but not with mutable references or owned values. This means
it is impossible for an update to a reference to affect the value retrieved by a
simultaneously existing reference. These restrictions on the structure of mem-
ory enable greatly simplified reasoning about aliased mutable data, a significant
challenge for verification in conventional languages.

3 Tool Overview

Figure 2 shows the architecture of the Move Prover. The prover takes as input
Move source code annotated with specifications. The overall workflow consists
of several steps. First, the specifications are extracted from the annotated code,
and the Move source code is compiled into Move bytecode. Next, all stack oper-
ations are removed from the bytecode and replaced with operations on local
variables, and the stackless bytecode is abstracted into a prover object model.
Along a separate path, the specifications are parsed and added to the prover
object model. The finalized model is translated to a program in the Boogie
intermediate verification language (IVL) [23,24].

The Boogie program is handed to the Boogie verification system, which gen-
erates an SMT formula in the SMT-LIB format [10]. This can then be checked
using an SMT solver such as Z3 [32] or CVC4 [9]. If the result of this check is
UNSAT, then the specification holds, which is reported to the user. Otherwise,
a countermodel is obtained from the SMT-solver, which gets translated back to
Boogie. Boogie produces a Boogie-level error report, and this result is analyzed
and transformed into a source-level diagnosis that is given back to the user. Using
this diagnosis, the user can refine the implementation and/or specification and
start the process again.

The prover is written in Rust and can be found in the language/move-

prover directory in the Libra repository on GitHub [25].1 We describe the Boo-
gie model and the specification language in more detail in the following sections.

1 This paper reflects the state of the Move Prover at github commit https://github.
com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef.

https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
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4 Boogie Model

Boogie IVL is a simple imperative programming language that supports local and
global variables, branching and loops, and procedures and procedure calls. Boo-
gie is designed for verification, so it also supports pre- and post-conditions, loop
invariants, and global axioms. Boogie programs are not executable; instead, they
are provided as input to the Boogie verification system, which applies a verifica-
tion strategy to generate verification conditions (as SMT formulas) [8]. If all of
the verification conditions hold, then each procedure ensures its post-conditions,
under the assumption that its pre-conditions hold. The variable types supported
by Boogie IVL match the sorts supported by SMT solvers, e.g., Booleans, inte-
gers, arrays, bitvectors, and datatypes. This makes the translation of Boogie
verification conditions into SMT formulas fairly transparent. Boogie is used as a
back-end for a wide variety of verification tools. The general strategy is to model
the semantics of a source language in Boogie. Then, programs and specifications
in the source language can be translated into Boogie IVL and checked using the
Boogie verification system. For more details about Boogie, we refer the reader
to [1,7,23,24].

Following this pattern, we built a Boogie model for Move bytecode pro-
grams. A few highlights of the model are shown in Fig. 3 and described below.
For a detailed understanding of the model, we refer the reader to the full Boo-
gie model, which can be found in the Libra repository at language/move-

prover/src/prelude.bpl and to a formalization of the core Move bytecode
language described in [13].

As mentioned above, in Move, a data value is either a primitive value (e.g.,
Boolean, integer, address), a struct (i.e. a record) containing one or more data
values, or a vector of data values. Data values are represented in Boogie as
the Value datatype, with one constructor for each primitive type, plus a vector
constructor (containing one field: a finite array of Value), used to model both
vectors and structs.

Because Move supports generic functions (i.e. type-parameterized functions),
we define a similar Boogie datatype for types called TypeValue (not shown).
A type-parameterized function can then be represented as a Boogie procedure
whose initial arguments are of type TypeValue (for the type parameters) and
whose data arguments are of type Value (regardless of their actual Move type).
The bytecode verifier ensures type-correctness, so we do not check that types
are used correctly, but rather assume this is the case (by using Boogie assume

statements as needed).
The Value and ValueArray datatypes are mutually recursive, and thus a

Value can be thought of as a finite tree. A primitive Value is a leaf node of
the tree, while a struct or vector Value is an internal node. A position within
the tree can be uniquely identified by a path, which is a sequence of integers. A
path specifies a node of the tree by starting at the root node and then following
children according to the indices in the path. We model paths as finite arrays
(also shown in Fig. 3). This simplifies the specification that two trees are disjoint,
which is a necessary precondition in some smart contract functions.
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type {:datatype} Value ;
function {:constructor} Boolean (b : bool) : Value ;
function {:constructor} In tege r ( i : int) : Value ;
function {:constructor} Address ( a : int) : Value ;
function {:constructor} Vector (v : ValueArray ) : Value ;

type {:datatype} ValueArray ;
function {:constructor} ValueArray (v : [int]Value , l : int) : ValueArray ;

type {:datatype} Path ;
function {:constructor} Path (p : [int]int, s i ze : int) : Path ;

type {:datatype} Location ;
function {:constructor} Global ( t : TypeValue , a : int) : Location ;
function {:constructor} Local ( i : int) : Location ;

type {:datatype} Reference ;
function {:constructor} Reference ( l : Location , p : Path ) : Reference ;

type {:datatype} Memory;
function {:constructor} Memory( domain : [ Location ]bool, conten ts : [ Location ]Value ) : Memory;
var $m : Memory;

Fig. 3. Highlights of the Boogie model for the Move Prover. The type {:datatype}
syntax is used to declare a new datatype, and the function {:constructor} syn-
tax is used to declare datatype constructors with their selectors. An array indexed by
type T containing elements of type V is denoted in Boogie as [T]V.

A Value can be stored in either local or global state, and references to data
in either are allowed as local variables. For simplicity and uniformity, we have a
single memory object which is a map from Location to Value (because memory
is a partial function, it also contains a map from Location to bool, which
indicates whether a particular location is present in memory). A Location is
either global (indexed by an account address and a type) or local (indexed by an
integer). References are then represented as a pair consisting of a location and
a path. To model reading from or writing to a reference, the global memory is
accessed along the reference’s path. Note that this is done by enumerating cases
up to the maximum possible path depth (based on the data structures in the
modules being verified).2

Finally, each bytecode instruction is modeled as a procedure modifying local
or global state in Boogie. A bytecode program is then translated to a sequence
of procedure calls, with goto statements handling control-flow.

2 As with most verification approaches based on generating verification conditions,
verifying recursive procedures or loops in Boogie requires writing loop invariants,
which can be difficult and may also introduce quantifiers, making the problem harder
for the underlying SMT solver. We have avoided this so far by relying on bounded
iteration, but our roadmap includes full handling of recursion and loops via loop
invariants.
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public fun pay_from_sender(payee: address, amount: u64) acquires T
{
Transaction::assert(payee != Transaction::sender(), 1); // new!

if (!exists<T>(payee)) {
Self::create_account(payee);

};
Self::deposit(
payee,
Self::withdraw_from_sender(amount),

);
}

spec fun pay_from_sender {
// ... omitted aborts_ifs ...
aborts_if amount == 0;
aborts_if global<T>(sender()).balance.value < amount;
ensures exists<T>(payee);
ensures global<T>(sender()).balance.value

== old(global<T>(sender()).balance.value) - amount;
}

Fig. 4. A simplified version of an example where verification led to an insight about a
function. Without the assert marked “new,” the specification fails to hold if payee
and sender are the same, as explained in Sect. 6.

5 Specifications

The Move Prover has a basic specification language for individual functions.
Specifications include classical Floyd-Hoare pre-conditions, post-conditions, and
a new condition specifying when a function aborts. (We are expanding this func-
tionality to include ghost variables and global invariants for modules.) These con-
ditions are separated from the actual code, in “spec blocks,” which are linked by
name to the structure or function being specified, or to the containing module.
Specifications never affect the execution of a module. A simplified example based
on verifying a real Libra module appears in Fig. 4.

Pre-conditions and post-conditions are standard. Pre-conditions are intro-
duced by the reserved word requires and post-conditions are introduced by
ensures, and each is followed by a Boolean expression, in a syntax that is
very similar to Move, which includes the usual relational and arithmetic oper-
ators, record field access, etc. A sub-expression after ensures can be enclosed
in old(...), causing the expression to be evaluated using the variable values
in the program state immediately after entry to the function, instead of using
the program state just before exit from the function. Move functions can return
multiple values, so the expressions return_1, return_2, etc. represent those
return values.

Formal verifiers for conventional programming languages treat run-time
errors as bugs to be reported. However, as in most smart contract languages,
performing an undefined operation in Move, such as division by zero, cancels the
entire transaction with no effect on the state except the consumption of some
currency to pay for the computational resources consumed by the code that
was executed before the error occurred. In Libra, this event is called an abort.
Aborts are not necessarily run-time errors in Move. They are the standard way
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to handle illegal transactions, such as trying to perform an operation that is not
authorized by the sender of the transaction.

Instead of treating all possible abort conditions as bugs, the Move Prover
allows the user to specify the conditions under which a function is expected to
abort. This type of specification is introduced by the reserved word aborts_if,
which is followed by the same kind of expressions that can appear after
requires. When aborts_if P appears in the specification of a function, the
Move Prover requires that the function aborts if and only if P holds. If multiple
aborts_if conditions are specified, there is an error unless the function aborts if
and only if the disjunction of all their conditions holds. (This current semantics
of aborts_if is subject to change.)

There are two expressions that are specific to the Libra blockchain. The
expression exists<M::T>(A) is true iff there is an instance of the type T from
module M appearing under account A in the global state tree. In the example
of Fig. 4, the first post-condition asserts that the payee account exists after a
payment transaction (the payee account might not exist before the payment, in
which case it is created). The expression global<M::T>(A) represents the value
of type T from module M stored at account A. In the example, this construct
accesses the balance values of the sender (the payer), to make sure that the
balance covers the payment, and to assert that the payer account balance has
decreased by the payment amount if the payment is successful.

Specification Translation. Specifications are translated into requires and
ensures statements in Boogie and combined with the prelude (the Boogie model,
see Sect. 4) and the translated Move bytecode for the program.

A global Boolean variable $abort_flag is introduced and assumed to be
false at the beginning of each procedure. The Boogie code for each instruc-
tion sets this flag to true for conditions that cause abort, such as undefined
operations or failures of explicit Move assert statements.

The specification translator combines, using logical disjunction, the condi-
tions of all aborts_if statements into a single expression (called condition

here), which is translated into the Boogie specifications ensures condition

==> $abort_flag and ensures !condition ==> !$abort_flag.

6 Evaluation

In this section, we report on our experience using the Move Prover. We first
demonstrate that it can successfully be used on core modules in the Libra code-
base.

Verifying Core Modules. We wrote specifications for all of the functions (25/25)
in the Libra module and most of the functions (34/38) in the LibraAccount mod-
ule (4 functions use features that are not yet supported: non-linear arithmetic
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and referencing data in the spec that does not appear in the code).3 These are
core modules of the Libra system, and their correct execution is crucial. The
Move Prover was able to prove all of these specifications in under a minute, as
shown below. The modules with their specifications are available in the Move
Prover source tree.4 The Libra and LibraAccount modules comprise nearly 1300
lines (including specifications). The total size of the generated Boogie files is
a little over 14,000 lines, and the generated SMT files are around 52,000 lines.
Writing these specifications was quite natural, thanks to the tree-based memory
model and to the support for type-generics. Experiments were run on a machine
with an Intel Core i9 processor with 8 cores @2.4 GHz and 32 GB RAM, running
macOS Catalina.

Move Module LoC Boogie LoC SMT LoC Functions Verified Runtime

Libra 420 3875 11,688 25 25 2.99 s

LibraAccount 867 10,362 40293 38 34 46.66 s

Impact of Move Prover. The Move Prover is co-developed with the Move lan-
guage itself (which is relatively stable) to ensure that contracts remain correct
as the entire toolset evolves. The prover is used in continuous integration, and
is beginning to be used to verify contracts in production. As of this writing, the
Move Prover hasn’t exposed any serious bugs. However, it has had an impact on
how we understand code. An example is a function called pay_from_sender (a
version with some specifications and comments omitted appears in Fig. 4). This
function simply pays money from the account of the sender (who signed the
transaction) to payee. In a previous version of the function, the Prover reported
errors for two of the “obvious” specification properties shown. The first speci-
fication says that the function always aborts when paying zero Libra, because
deposit aborts unless the amount is positive. However, in the earlier version,
create_account handled the payment to deposit the amount in the account
when the account did not yet exist, and that payment was allowed to be zero,
violating the specification. The function was rewritten as it appears now, so
that the same deposit code is called regardless of whether the payee account was
newly created. The last specification says that the payer’s account decreases by
amount after a successful payment. This condition was violated when the payer
and payee were the same, resulting in no decrease. Adding an assert (marked
“new!” in the figure) to abort in that useless case makes the specification simpler.

3 Two additional functions in LibraAccount are “native” which means that they are
built-in and don’t have any Move code. These are modeled directly in Boogie and
are not included in the count here.

4 To reproduce, run cargo run -- -s . -- <libra|libra_account>.move
from tests/sources/stdlib/modules in the move-prover source tree.
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7 Related Work

The only other formal verification framework for Move that we are aware of
is described in [36], where a high-level approach and some case studies are
described, but no implementation details are provided.

The closest work in the literature has been done in the context of verifica-
tion of solidity smart contracts using Boogie. VERISOL [22] is one tool which
formally verifies solidity smart contracts via a translation to Boogie. Its speci-
fication language is designed for the specific context of application policies, but
general specifications can be given by using solidity assertions. SOLC-VERIFY
[19,20] also uses Boogie to perform formal verification for solidity. It includes
an annotation-based specification language and supports a larger feature-set of
solidity than VERISOL. Interestingly, the formalization of the solidity persistent
memory model presented in [20] is similar to our tree-based memory model for
Move, though they were developed independently. One novelty of our model in
comparison to theirs is its ability to handle generic functions as discussed in
Sect. 4 (generics are supported in Move but not in solidity). Both VERISOL and
SOLC-VERIFY target contracts written in solidity, and not in the Ethereum
bytecode. In contrast, the Move Prover operates on the Move bytecode.

The solidity compiler itself includes a formal verification framework that
works via a direct translation to SMT [2]. Several other tools have focused on
specific vulnerability patterns, rather than user-defined specifications [16,28,34,
40]. Other theoretical foundations have also been employed for the verification of
solidity smart contracts. These include the K framework [35] (see, e.g., [21]), F*
[29] (see, e.g., [11,18]), and proof assistants such as Coq [37] (see, e.g., [42,43]).

Formal verification of Rust [30] programs is also related to the Move Prover,
as Move’s type system has similar characteristics to Rust [30]. Prusti [4] is a
tool that leverages Rust’s type system information to verify Rust programs. It is
based on a higher-level intermediate framework called Viper [33] (that internally
uses Boogie in some scenarios). Other verification efforts for Rust employ a
translation to LLVM and then leverage LLVM-based verification techniques (see,
e.g., [6,27,39]).

8 Conclusion

In this paper, we introduced the Move Prover, a formal verification tool designed
to be an integral part of the process of smart contract development for the Libra
platform. Though our initial experience with the Move Prover is positive, there
are many avenues for future work that we plan to pursue.

As Move continues to evolve, we expect that some constructs may be easier
and more efficient to model by using custom SMT constructs. An example of
this is the built-in vector type. Our current model requires the use of quantifiers
to compare two vector objects. However, an SMT theory of sequences could be
used to model vectors without needing to use quantifiers to define equality. We
plan to investigate the use of richer (and possibly custom) SMT theories in our
model.
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The specifications we have written so far are local in the sense that they deal
with only a single execution of a single Move function. However, some properties
of the Libra blockchain are inherently global in nature, such as the fact that
the total amount of currency should remain constant. We plan to investigate
techniques for creating and checking such global specifications.

The current Prover is still in a prototype phase. But the goal is for it to
be a product that is usable by everyone who is writing contracts for the Libra
platform. We expect that there will be many challenges in producing a user-
friendly, industrial-strength tool, but we also look forward to a future where
formal specification and verification is a routine part of the development process
for Move modules on the Libra blockchain.
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